Dynamic Ductwork:

From Design to Installation

Jack Hopkins, Applied Engineering Don Davis, Shoffner/Kalthoff

Co-Sponsors:

East Tennessee Chapter of ASHRAE
Tennessee Association of PHCC

May 7, 2015

Duct Sizing

Concept of Friction Drop

- Surface Friction
- Turning Friction

Equation

Friction Chart

In any duct section thin which air is flowing, there is a continuous dos of pressure. This loss is called duct friction loss and depends on the following:

- Air velocity
 Duct size
- 3. Interior surface roughness
- 4. Duct length

Varying any one of these four factors influences the friction loss in the ductwork. The relationship

of these factors is illustrated in the following equation:

 $\Delta P = 0.03 f \left(\frac{L}{d^{1.22}}\right) \left(\frac{V}{1000}\right)^{1.82}$

where: $\Delta P = \text{friction loss (in. wg)}$ f = interior surface roughness (0.9 for gal-vanized duct)

L = length of duct (ft)

d = duct diameter (in.), equivalent diam.
for rectangular ductwork

V = air velocity (fpm)

Source: Carrier Design Manual, 1960

Program

Ductulator

Equal Friction Method

- 0.1 inches $\triangle P$ / 100 feet supply ductwork
- 0.08 inches $\triangle P$ / 100 feet return ductwork
- What is pressure drop?
- Alternate interpretation of equal friction method

Equal Velocity Method

- 2000 to 2500 fpm: VAV upstream of box (this is "medium pressure."
- 2400 fpm: fumes/mist/very light particulate
- 3500 fpm: dust collection / small particulate
- 5000 fpm: heavy particulate (metals)

No Friction Method (Plenum)

- Oversize duct for little to no drop over length of duct trunk
- All takeoffs should now deliver equal flow if same size branch and length
- · Adjust branch size for larger or smaller rooms
- Residential / Light Commercial
- Swimming Pools

Balancing

- · Volume dampers in diffusers?
- Volume dampers in final branches?
- Advantages / Disadvantages?
- Volume dampers in trunk branches

Duct Accessories

- Diffusers: Round Neck/Square Neck
- Final Flex Length: 4 feet? 40 feet?
- Final Branch Balancing Damper
 - Extended Quadrant Preferred

Calculating Friction Drop

- Units: Inches Water Gage
- Ductwork: Length of Duct x Friction Factor/100 feet
- Fittings: Low pressure, usually about 50% of duct loss
- Fittings: Medium and high pressure, calculate with ASHRAE tables. This is important!

Typical System Pressure Loss

- Supply Diffuser: 0.08 inches (from catalog)
- Supply Duct: 0.15 inches (about 100 feet)
- Loss at unit (system effect): 0.1 inches
- Return Duct: 0.12 inches (about 100 feet)
- Return Register: (0.08 inches)
- Total: 0.53 inches

Duct Design

Drafting Ductwork

- Single-line vs. Double-line
- Single-line: Fitting design left to contractor
- Double-line: Fitting design by designer, but will it be built that way?
- Low Pressure: Somewhat forgiving
- Medium and High Pressure: Needs detailed double-lined drafting.

Duct Fabrication

Fabrication Methods

- Use of Computer Program
- Sheet Metal Cutting
 - Hand
 - Machine

Locks / Seams

- Pittsburg
- Acme
- Snap-lock
- Others

Joining

- Slip and Drive
- Ductmate (or equal)

Hanging

- Support
 - Trapeze
 - Straps
 - Wire
 - Others

Discussion

Topics

- Contractors comments on engineer's drawings
- Engineer's comments on contractor's installation
- Others...

